Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
World J Gastroenterol ; 30(14): 2018-2037, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38681125

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Recent reports suggest that Fusobacterium nucleatum (F. nucleatum) contributes to the initiation, progression, and prognosis of CRC. Butyrate, a short-chain fatty acid derived from the bacterial fermentation of soluble dietary fiber, is known to inhibit various cancers. This study is designed to explore whether F. nucleatum influences the onset and progression of CRC by impacting the intestinal metabolite butyric acid. AIM: To investigate the mechanism by which F. nucleatum affects CRC occurrence and development. METHODS: Alterations in the gut microbiota of BALB/c mice were observed following the oral administration of F. nucleatum. Additionally, DLD-1 and HCT116 cell lines were exposed to sodium butyrate (NaB) and F. nucleatum in vitro to examine the effects on proliferative proteins and mitochondrial function. RESULTS: Our research indicates that the prevalence of F. nucleatum in fecal samples from CRC patients is significantly greater than in healthy counterparts, while the prevalence of butyrate-producing bacteria is notably lower. In mice colonized with F. nucleatum, the population of butyrate-producing bacteria decreased, resulting in altered levels of butyric acid, a key intestinal metabolite of butyrate. Exposure to NaB can impair mitochondrial morphology and diminish mitochondrial membrane potential in DLD-1 and HCT116 CRC cells. Consequently, this leads to modulated production of adenosine triphosphate and reactive oxygen species, thereby inhibiting cancer cell proliferation. Additionally, NaB triggers the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, blocks the cell cycle in HCT116 and DLD-1 cells, and curtails the proliferation of CRC cells. The combined presence of F. nucleatum and NaB attenuated the effects of the latter. By employing small interfering RNA to suppress AMPK, it was demonstrated that AMPK is essential for NaB's inhibition of CRC cell proliferation. CONCLUSION: F. nucleatum can promote cancer progression through its inhibitory effect on butyric acid, via the AMPK signaling pathway.


Subject(s)
Butyric Acid , Cell Proliferation , Colorectal Neoplasms , Feces , Fusobacterium nucleatum , Gastrointestinal Microbiome , Mice, Inbred BALB C , Animals , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Gastrointestinal Microbiome/drug effects , Butyric Acid/pharmacology , Butyric Acid/metabolism , Humans , Mice , Feces/microbiology , Cell Proliferation/drug effects , HCT116 Cells , Male , Mitochondria/metabolism , Mitochondria/drug effects , Fusobacterium Infections/microbiology , Disease Models, Animal , Cell Line, Tumor , Female , Disease Progression , Dysbiosis , Membrane Potential, Mitochondrial/drug effects
2.
Analyst ; 149(9): 2586-2593, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38497408

ABSTRACT

Nipah virus (NiV), a bat-borne zoonotic viral pathogen with high infectivity and lethality to humans, has caused severe outbreaks in several countries of Asia during the past two decades. Because of the worldwide distribution of the NiV natural reservoir, fruit bats, and lack of effective treatments or vaccines for NiV, routine surveillance and early detection are the key measures for containing NiV outbreaks and reducing its influence. In this study, we developed two rapid, sensitive and easy-to-conduct methods, RAA-CRISPR/Cas12a-FQ and RAA-CRISPR/Cas12a-FB, for NiV detection based on a recombinase-aided amplification (RAA) assay and a CRISPR/Cas12a system by utilizing dual-labeled fluorophore-quencher or fluorophore-biotin ssDNA probes. These two methods can be completed in 45 min and 55 min and achieve a limit of detection of 10 copies per µL and 100 copies per µL of NiV N DNA, respectively. In addition, they do not cross-react with nontarget nucleic acids extracted from the pathogens causing similar symptoms to NiV, showing high specificity for NiV N DNA detection. Meanwhile, they show satisfactory performance in the detection of spiked samples from pigs and humans. Collectively, the RAA-CRISPR/Cas12a-FQ and RAA-CRISPR/Cas12a-FB methods developed by us would be promising candidates for the early detection and routine surveillance of NiV in resource-poor areas and outdoors.


Subject(s)
CRISPR-Cas Systems , Limit of Detection , Nipah Virus , Nipah Virus/genetics , Nipah Virus/isolation & purification , CRISPR-Cas Systems/genetics , Humans , Animals , Nucleic Acid Amplification Techniques/methods , DNA, Viral/genetics , DNA, Viral/analysis , Fluorescent Dyes/chemistry
3.
J Bacteriol ; 206(2): e0034023, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38214528

ABSTRACT

Glycerol utilization as a carbohydrate source by Borreliella burgdorferi, the Lyme disease spirochete, is critical for its successful colonization and persistence in the tick vector. The expression of the glpFKD (glp) operon, which encodes proteins for glycerol uptake/utilization, must be tightly regulated during the enzootic cycle of B. burgdorferi. Previous studies have established that the second messenger cyclic di-GMP (c-di-GMP) is required for the activation of glp expression, while an alternative sigma factor RpoS acts as a negative regulator for glp expression. In the present study, we report identification of a cis element within the 5´ untranslated region of glp that exerts negative regulation of glp expression. Further genetic screen of known and predicted DNA-binding proteins encoded in the genome of B. burgdorferi uncovered that overexpressing Borrelia host adaptation regulator (BadR), a known global regulator, dramatically reduced glp expression. Similarly, the badR mutant significantly increased glp expression. Subsequent electrophoretic mobility shift assay analyses demonstrated that BadR directly binds to this cis element, thereby repressing glp independent of RpoS-mediated repression. The efficiency of BadR binding was further assessed in the presence of c-di-GMP and various carbohydrates. This finding highlights multi-layered positive and negative regulatory mechanisms employed by B. burgdorferi to synchronize glp expression throughout its enzootic cycle.IMPORTANCEBorreliella burgdorferi, the Lyme disease pathogen, must modulate its gene expression differentially to adapt successfully to its two disparate hosts. Previous studies have demonstrated that the glycerol uptake and utilization operon, glpFKD, plays a crucial role in spirochetal survival within ticks. However, the glpFKD expression must be repressed when B. burgdorferi transitions to the mammalian host. In this study, we identified a specific cis element responsible for the repression of glpFKD. We further pinpointed Borrelia host adaptation regulator as the direct binding protein to this cis element, thereby repressing glpFKD expression. This discovery paves the way for a deeper exploration of how zoonotic pathogens sense distinct hosts and switch their carbon source utilization during transmission.


Subject(s)
Borrelia burgdorferi , Borrelia , Lyme Disease , Ticks , Animals , Borrelia/genetics , Borrelia/metabolism , Glycerol/metabolism , Host Adaptation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Operon , Gene Expression Regulation, Bacterial , Mammals/genetics , Mammals/metabolism
4.
Hum Vaccin Immunother ; 20(1): 2299607, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38258510

ABSTRACT

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) persistently kills nearly 1.5 million lives per year in the world, whereas the only licensed TB vaccine BCG exhibits unsatisfactory efficacy in adults. Taking BCG as a vehicle to express Mtb antigens is a promising way to enhance its efficacy against Mtb infection. In this study, the immune efficacy of recombination BCG (rBCG-ECD003) expressing specific antigens ESAT-6, CFP-10, and nDnaK was evaluated at different time points after immunizing BALB/c mice. The results revealed that rBCG-ECD003 induced multiple Th1 cytokine secretion including IFN-γ, TNF-α, IL-2, and IL-12 when compared to the parental BCG. Under the action of PPD or ECD003, rBCG-ECD003 immunization resulted in a significant increase in the proportion of IL-2+ and IFN-γ+IL-2+ CD4+T cells. Importantly, rBCG-ECD003 induced a stronger long-term humoral immune response without compromising the safety of the parental BCG vaccine. By means of the protective efficacy assay in vitro, rBCG-ECD003 showed a greater capacity to inhibit Mtb growth in the long term. Collectively, these features of rBCG-ECD003 indicate long-term protection and the promising effect of controlling Mtb infection.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , BCG Vaccine , Interleukin-2 , Tuberculosis/prevention & control , Immunity, Humoral , Mice, Inbred BALB C
5.
Talanta ; 269: 125478, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38039675

ABSTRACT

Rapid and accurate detection of the hepatitis C virus (HCV) is essential for early diagnosis and prevention of virus transmission. This study presents a novel approach that combines the three-dimensional (3D)-DNA walking nanomachine with catalytic hairpin assembly (CHA) and copper nanoclusters (CuNCs). By integrating CHA with the 3D DNA walking nanomachine, efficient target amplification on 3D surfaces was achieved, leading to improved reaction speed and detection performance. Terminal deoxynucleotidyl transferase (TdT) was utilized to generate T-rich DNA sequences. These sequences served as templates for the formation of CuNCs, which functioned as the readout signal. The optimized 3D-DNA walking nanomachine exhibited excellent sensitivity in detecting HCV, with a detection limit of 42.4 pM and a linear range of 100 pM to 2 nM. The biosensor demonstrated excellent selectivity and reproducibility, with a recovery rate ranging from 94% to 108% for the detection of real samples. This design holds great potential for sensitive, label-free, and reliable detection of HCV in clinical settings. Furthermore, the versatility of this approach allows for the customization of target sequences, thereby facilitating the detection of various nucleic acid targets. Therefore, this method has the potential to advance personalized medicine, disease management, and genetic analysis in the field of molecular diagnosis.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Hepatitis C , MicroRNAs , Humans , Hepacivirus/genetics , Copper , Reproducibility of Results , Limit of Detection , DNA , Biosensing Techniques/methods , DNA Nucleotidylexotransferase , Hepatitis C/diagnosis , MicroRNAs/analysis
6.
J Nanobiotechnology ; 21(1): 493, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38115051

ABSTRACT

A multimodal analytical strategy utilizing different modalities to cross-validate each other, can effectively minimize false positives or negatives and ensure the accuracy of detection results. Herein, we establish a colorimetric, photothermal, and fluorescent triple modal CRISPR/Cas12a detection platform (CPF-CRISPR). An MNPs-ssDNA-HRP signal probe is designed to act as a substrate to trigger three signal outputs. In the presence of the DNA target, MNPs-ssDNA-HRP is cleaved by the activated CRISPR/Cas12a, resulting in the release of HRP and generating short DNA strands with 3-terminal hydroxyl on magnetic beads. The released HRP subsequently catalyzed TMB-H2O2 reaction and oxidized TMB is used for colorimetric and photothermal signal detection. Under the catalysis of terminal deoxynucleotidyl transferase (TdT), the remaining short DNA strands are used as primers to form poly-T and function as scaffolds to form copper nanoclusters for fluorescent signal output. To verify the practical application of CPF-CRISPR, we employed MRSA as a model. The results demonstrate the platform's high accuracy and sensitivity, with a limit of detection of 101 CFU/mL when combined with recombinase polymerase amplification. Therefore, by harnessing the programmability of CRISPR/Cas12a, the biosensor has the potential to detect various drug-resistant bacteria, demonstrating significant practical applicability.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Colorimetry , Hydrogen Peroxide , Bacteria/genetics , Coloring Agents , DNA, Single-Stranded
7.
ACS Infect Dis ; 9(11): 2306-2315, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37811564

ABSTRACT

Controlling and mitigating infectious diseases caused by multiple pathogens or pathogens with several subtypes require multiplex nucleic acid detection platforms that can detect several target genes rapidly, specifically, sensitively, and simultaneously. Here, we develop a detection platform, termed Multiplex Assay of RPA and Collateral Effect of Cas12a-based System (MARPLES), based on multiplex nucleic acid amplification and Cas12a ssDNase activation to diagnose these diseases and identify their pathogens. We use the clinical specimens of hand, foot, and mouth disease (HFMD) and influenza A to evaluate the feasibility of MARPLES in diagnosing the disease and identifying the pathogen, respectively, and find that MARPLES can accurately diagnose the HFMD associated with enterovirus 71, coxsackievirus A16 (CVA16), CVA6, or CVA10 and identify the exact types of H1N1 and H3N2 in an hour, showing high sensitivity and specificity and 100% predictive agreement with qRT-PCR. Collectively, our findings demonstrate that MARPLES is a promising multiplex nucleic acid detection platform for disease diagnosis and pathogen identification.


Subject(s)
Hand, Foot and Mouth Disease , Influenza A Virus, H1N1 Subtype , Nucleic Acids , Humans , CRISPR-Cas Systems , Recombinases , Influenza A Virus, H3N2 Subtype , Sensitivity and Specificity , Nucleotidyltransferases , Multiplex Polymerase Chain Reaction
8.
Can J Microbiol ; 69(12): 501-511, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37672795

ABSTRACT

Bacillus cereus endophthalmitis is a devastating eye infection that causes rapid blindness through the release of extracellular tissue-destructive exotoxins. The phagocytic and antibacterial functions of ocular cells are the keys to limiting ocular bacterial infections. In a previous study, we identified a new virulence gene, plcA-2 (different from the original plcA-1 gene), that was strongly associated with the plcA gene of Listeria monocytogenes. This plcA gene had been confirmed to play an important role in phagocytosis. However, how the Bc-phosphatidylinositol-specific phospholipase C (PI-PLC) proteins encoded by the plcA-1/2 genes affect phagocytes remains unclear in B. cereus endophthalmitis. Here, we found that the enzymatic activity of Bc-PI-PLC-A2 was approximately twofold higher than that of Bc-PI-PLC-A1, and both proteins inhibited the viability of Müller cells. In addition, PI-PLC proteins reduced phagocytosis of Müller cells by decreasing the phosphorylation levels of key proteins in the PI3K/AKT signaling pathway. In conclusion, we showed that PI-PLC proteins contribute to inhibit the viability of and suppress the phagocytosis of Müller cells, providing new insights into the pathogenic mechanism of B. cereus endophthalmitis.


Subject(s)
Endophthalmitis , Listeria monocytogenes , Humans , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , Phosphatidylinositol Diacylglycerol-Lyase/genetics , Phosphatidylinositol Diacylglycerol-Lyase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Survival , Ependymoglial Cells/metabolism , Phagocytes/metabolism , Signal Transduction , Type C Phospholipases/genetics , Type C Phospholipases/metabolism
9.
Food Sci Nutr ; 11(9): 5582-5595, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37701239

ABSTRACT

The aberrant differentiation of osteoclasts is a key feature of the pathogenesis of osteoporosis, which has a devastating impact on human health. While the effects of Orientin (Ori) on osteoporosis, particularly on RANKL-stimulated osteoclast production and activation, remain still unclear, Ori has been found to display several biological activities, including antioxidant and anti-inflammatory. In this work, we investigated the possible pathways through which Ori suppressed RANKL-induced osteoclast development and showed for the first time that it does so. The macrophages from the bone marrow (BMMs) were cultivated and then treated with Ori after being stimulated with RANKL. Then, TRAP-positive multinucleated cells were counted, and F-actin ring analysis was used to assess Ori's impact on mature osteoclast development. In addition, dihydroethidium (DHE) staining was used to evaluate the impact of Ori on RANKL-induced reactive oxygen species (ROS). In addition, we performed western blotting and quantitative RT-PCR analysis to investigate probable causes of these downregulation effects. We discovered that Ori inhibits the creation of osteoclasts, the gene and protein expressions unique to osteoclasts, and the ROS production. By activating Nrf2 and other ROS-scavenging enzymes, Ori reduces intracellular ROS levels. The expression of the main transcription factor of osteoclast development, c-Fos, was downregulated together with NFATc1, CTSK, and NFATc2, thanks to Ori's inhibition of RANKL-induced NF-κB. Consistent with its in vitro antiosteoclastogenic action, Ori therapy in the ovariectomized (OVX) rat model was also able to restore bone mass and improve microarchitecture in the distal femurs. Together, our results demonstrate that Ori is a flavonoid molecule with therapeutic promise for bone illnesses associated with osteoclasts, such as osteoporosis.

10.
Clin Exp Immunol ; 214(2): 144-153, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37624404

ABSTRACT

Due to the aggravation of bacterial drug resistance and the lag in the development of new antibiotics, it is crucial to develop novel therapeutic regimens for bacterial infectious diseases. Currently, immunotherapy is a promising regimen for the treatment of infectious diseases. Mucosal-associated invariant T (MAIT) cells, a subpopulation of innate-like T cells, are abundant in humans and can mount a rapid immune response to pathogens, thus becoming a potential target of immunotherapy for infectious diseases. At the site of infection, activated MAIT cells perform complex biological functions by secreting a variety of cytokines and cytotoxic substances. Many studies have shown that MAIT cells have immunoprotective effects because they can bridge innate and adaptive immune responses, leading to bacterial clearance, tissue repair, and homeostasis maintenance. MAIT cells also participate in cytokine storm generation, tissue fibrosis, and cancer progression, indicating that they play a role in immunopathology. In this article, we review recent studies of MAIT cells, discuss their dual roles in bacterial infectious diseases and provide some promising MAIT cell-targeting strategies for the treatment of bacterial infectious diseases.


Subject(s)
Bacterial Infections , Communicable Diseases , Mucosal-Associated Invariant T Cells , Neoplasms , Humans , Cytokines , Neoplasms/therapy
11.
AMB Express ; 13(1): 85, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573278

ABSTRACT

Enterococcus faecalis is one of the main pathogens that causes hospital-acquired infections because it is intrinsically resistant to some antibiotics and often is capable of biofilm formation, which plays a critical role in resisting the external environment. Therefore, attacking biofilms is a potential therapeutic strategy for infections caused by E. faecalis. Current research indicates that diacerein used in the treatment of osteoarthritis showed antimicrobial activity on strains of gram-positive cocci in vitro. In this study, we tested the MICs of diacerein using the broth microdilution method, and successive susceptibility testing verified that E. faecalis is unlikely to develop resistance to diacerein. In addition, we obtained a strain of E. faecalis HE01 with strong biofilm-forming ability from an eye hospital environment and demonstrated that diacerein affected the biofilm development of HE01 in a dose-dependent manner. Then, we explored the mechanism by which diacerein inhibits biofilm formation through qRT-PCR, extracellular protein assays, hydrophobicity assays and transcriptomic analysis. The results showed that biofilm formation was inhibited at the initial adhesion stage by inhibition of the expression of the esp gene, synthesis of bacterial surface proteins and reduction in cell hydrophobicity. In addition, transcriptome analysis showed that diacerein not only inhibited bacterial growth by affecting the oxidative phosphorylation process and substance transport but also inhibited biofilm formation by affecting secondary metabolism, biosynthesis, the ribosome pathway and luxS expression. Thus, our findings provide compelling evidence for the substantial therapeutic potential of diacerein against E. faecalis biofilms.

12.
Mol Phylogenet Evol ; 188: 107903, 2023 11.
Article in English | MEDLINE | ID: mdl-37574177

ABSTRACT

Yersinia spp. vary significantly in their ability to cause diseases that threaten public health. Their pathogenicity is frequently associated with increasing antimicrobial resistance (AMR) and various virulence factors. The aim of the study was to investigate the AMR genes, virulence factors, and genetic diversity of Yersinia strains isolated from meats and fish in Wenzhou in 2020 by using whole-genome sequencing (WGS). A total of 50 isolates were collected. The phylogenetic relationships among the Yersinia species were also analyzed using multilocus sequence typing (MLST), core genome multi-locus sequence typing (cgMLST), and single nucleotide polymorphism (SNP) analysis. According to the results, all the strains could be classified into five species, with most isolated from beef, followed by poultry, pork, and fish. AMR genes were identified in 23 strains. And the qnrD1 genes were all located in the Col3M plasmid. Virulence genes, such as yaxA, ystB, pla, and yplA, were also found in the 15 Y. enterocolitica strains. And this study also found the presence of icm/dot type IVB-related genes in one Yersinia massiliensis isolate. MLST analysis identified 43 sequence types (STs), 19 of which were newly detected in Yersinia. Moreover, cgMLST analysis revealed that no dense genotype clusters were formed (cgMLST 5341, 5344, 5346-5350, 5353-5390). Instead, the strains appeared to be dispersed over large distances, except when multiple isolates shared the same ST. Isolates Y4 and Y26 were closely related to strains originating from South Korea and Denmark. This study showed considerable diversity in Yersinia spp. isolated from local areas (Wenzhou City). The data generated in our study may enrich the molecular traceability database of Yersinia and provide a basis for the development of more effective antipathogen control strategies.


Subject(s)
Anti-Bacterial Agents , Virulence Factors , Animals , Cattle , Virulence Factors/genetics , Multilocus Sequence Typing/methods , Phylogeny , Drug Resistance, Bacterial/genetics , Yersinia/genetics , Genetic Variation , Genome, Bacterial
13.
Front Microbiol ; 14: 1169476, 2023.
Article in English | MEDLINE | ID: mdl-37396356

ABSTRACT

The present study investigated the water quality index, microbial composition and antimicrobial resistance genes in urban water habitats. Combined chemicals testing, metagenomic analyses and qualitative PCR (qPCR) were conducted on 20 locations, including rivers from hospital surrounds (n = 7), community surrounds (n = 7), and natural wetlands (n = 6). Results showed that the indexes of total nitrogen, phosphorus, and ammonia nitrogen of hospital waters were 2-3 folds high than that of water from wetlands. Bioinformatics analysis revealed a total of 1,594 bacterial species from 479 genera from the three groups of water samples. The hospital-related samples had the greatest number of unique genera, followed by those from wetlands and communities. The hospital-related samples contained a large number of bacteria associated with the gut microbiome, including Alistipes, Prevotella, Klebsiella, Escherichia, Bacteroides, and Faecalibacterium, which were all significantly enriched compared to samples from the wetlands. Nevertheless, the wetland waters enriched bacteria from Nanopelagicus, Mycolicibacterium and Gemmatimonas, which are typically associated with aquatic environments. The presence of antimicrobial resistance genes (ARGs) that were associated with different species origins in each water sample was observed. The majority of ARGs from hospital-related samples were carried by bacteria from Acinetobacter, Aeromonas and various genera from Enterobacteriaceae, which each was associated with multiple ARGs. In contrast, the ARGs that were exclusively in samples from communities and wetlands were carried by species that encoded only 1 to 2 ARGs each and were not normally associated with human infections. The qPCR showed that water samples of hospital surrounds had higher concentrations of intI1 and antimicrobial resistance genes such as tetA, ermA, ermB, qnrB, sul1, sul2 and other beta-lactam genes. Further genes of functional metabolism reported that the enrichment of genes associated with the degradation/utilization of nitrate and organic phosphodiester were detected in water samples around hospitals and communities compared to those from wetlands. Finally, correlations between the water quality indicators and the number of ARGs were evaluated. The presence of total nitrogen, phosphorus, and ammonia nitrogen were significantly correlated with the presence of ermA and sul1. Furthermore, intI1 exhibited a significant correlation with ermB, sul1, and blaSHV, indicating a prevalence of ARGs in urban water environments might be due to the integron intI1's diffusion-promoting effect. However, the high abundance of ARGs was limited to the waters around the hospital, and we did not observe the geographical transfer of ARGs along with the river flow. This may be related to water purifying capacity of natural riverine wetlands. Taken together, continued surveillance is required to assess the risk of bacterial horizontal transmission and its potential impact on public health in the current region.

14.
Front Immunol ; 14: 1161149, 2023.
Article in English | MEDLINE | ID: mdl-37251387

ABSTRACT

Mosquito-borne viral diseases are a group of viral illnesses that are predominantly transmitted by mosquitoes, including viruses from the Togaviridae and Flaviviridae families. In recent years, outbreaks caused by Dengue and Zika viruses from the Flaviviridae family, and Chikungunya virus from the Togaviridae family, have raised significant concerns for public health. However, there are currently no safe and effective vaccines available for these viruses, except for CYD-TDV, which has been licensed for Dengue virus. Efforts to control the transmission of COVID-19, such as home quarantine and travel restrictions, have somewhat limited the spread of mosquito-borne viral diseases. Several vaccine platforms, including inactivated vaccines, viral-vector vaccines, live attenuated vaccines, protein vaccines, and nucleic acid vaccines, are being developed to combat these viruses. This review analyzes the various vaccine platforms against Dengue, Zika, and Chikungunya viruses and provides valuable insights for responding to potential outbreaks.


Subject(s)
COVID-19 , Chikungunya virus , Culicidae , Dengue , Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Humans , Mosquito Vectors , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Vaccines, Attenuated , Dengue/epidemiology , Dengue/prevention & control , Vaccine Development
15.
Vaccines (Basel) ; 11(3)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36992193

ABSTRACT

Tuberculosis (TB) remains a serious global health problem. Despite the widespread use of the Mycobacterium bovis bacillus Calmette-Guerin (BCG) vaccine, the primary factor for the TB pandemic and deaths is adult TB, which mainly result from endogenous reactivation of latent Mycobacterium tuberculosis (MTB) infection. Improved new TB vaccines with eligible safety and long-lasting protective efficacy remains a crucial step toward the prevention and control of TB. In this study, five immunodominant antigens, including three early secreted antigens and two latency associated antigens, were used to construct a single recombinant fusion protein (Epera013f) and a protein mixture (Epera013m). When formulated with aluminum adjuvant, the two subunit vaccines Epera013m and Epera013f were administered to BALB/c mice. The humoral immune responses, cellular responses and MTB growth inhibiting capacity elicited after Epera013m and Epera013f immunization were analyzed. In the present study, we demonstrated that both the Epera013f and Epera013m were capable of inducing a considerable immune response and protective efficacy against H37Rv infection compared with BCG groups. In addition, Epera013f generated a more comprehensive and balanced immune status, including Th1, Th2 and innate immune response, over Epera013f and BCG. The multistage antigen complex Epera013f possesses considerable immunogenicity and protective efficacy against MTB infection ex vivo indicating its potential and promising applications in further TB vaccine development.

16.
J Agric Food Chem ; 71(9): 4193-4200, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36812357

ABSTRACT

Accurate, rapid, and sensitive pathogenic detections play an important role in food safety. Herein, we developed a novel CRISPR/Cas12a mediated strand displacement/hybridization chain reaction (CSDHCR) nucleic acid assay for foodborne pathogenic colorimetric detection. A biotinylated DNA toehold is coupled on avidin magnetic beads and acts as an initiator strand to trigger the SDHCR. The SDHCR amplification allowed the formation of long hemin/G-quadruplex-based DNAzyme products to catalyze the TMB-H2O2 reaction. In the presence of the DNA targets, the trans-cleavage activity of CRISPR/Cas12a was activated to cleave the initiator DNA, resulting in the failure of SDHCR and no color change. Under optimal conditions, the CSDHCR has a satisfactory linear detection of DNA targets with a regression equation Y = 0.0531*X - 0.0091 (R2 = 0.9903) in the range of 10 fM to 1 nM, and the limit of detection was determined as 4.54 fM. In addition, Vibrio vulnificus, one foodborne pathogen, was used to verify the practical application of the method, and it showed satisfactory specificity and sensitivity with a limit of detection at 1.0 × 100 CFU/mL coupling with recombinase polymerase amplification. Our proposed CSDHCR biosensor could be a promising alternative method for ultrasensitive and visual detection of nucleic acids and the practical application of foodborne pathogens.


Subject(s)
Colorimetry , DNA, Catalytic , Colorimetry/methods , Hydrogen Peroxide , CRISPR-Cas Systems , DNA , DNA, Catalytic/genetics
17.
Front Microbiol ; 13: 1003359, 2022.
Article in English | MEDLINE | ID: mdl-36299723

ABSTRACT

The development of multifunctional nanomaterials with bacterial imaging and killing activities is of great importance for the rapid diagnosis and timely treatment of bacterial infections. Herein, peptide-functionalized gold nanoclusters (CWR11-AuNCs) with high-intensity red fluorescence were successfully synthesized via a one-step method using CWR11 as a template and by optimizing the ratio of CWR11 to HAuCl4, reaction time, pH, and temperature. The CWR11-AuNCs bound to bacteria and exhibited selective fluorescence microscopy imaging properties, which is expected to provide a feasible method for locating and imaging bacteria in complex in vivo environments. In addition, CWR11-AuNCs not only retained the antibacterial and bactericidal activities of CWR11 but also exhibited certain inhibitory or killing effects on gram-negative and gram-positive bacteria and biofilms. The MICs of CWR11-AuNCs against Escherichia coli and Staphylococcus aureus were 178 and 89 µg/ml, respectively. Surprisingly, cell viability in the CWR11-AuNC-treated group was greater than that in the CWR11-treated group, and the low cytotoxicity exhibited by the CWR11-AuNCs make them more promising for clinical applications.

18.
Front Microbiol ; 13: 973996, 2022.
Article in English | MEDLINE | ID: mdl-36274718

ABSTRACT

Aeromonas hydrophila is an emerging waterborne and foodborne pathogen with pathogenicity to humans and warm water fishes, which severely threatens human health, food safety and aquaculture. A novel method for the rapid, accurate, and sensitive detection of pathogenic A. hydrophila is still needed to reduce the impact on human health and aquaculture. In this work, we developed a rapid, accurate, sensitive, and visual detection method (dRAA-CRISPR/Cas12a), without elaborate instruments, integrating the dualplex recombinase-assisted amplification (dRAA) assay and CRISPR/Cas12a system to detect pathogenic A. hydrophila expressing aerA and/or hlyA virulence genes. The dRAA-CRISPR/Cas12a method has high sensitivity, which can rapidly detect (about 45 min) A. hydrophila with the limit of detection in 2 copies of genomic DNA per reaction, and has high specificity for three pathogenic A. hydrophila strains (aerA+hlyA- , aerA-hlyA+ , and aerA+hlyA+ ). Moreover, dRAA-CRISPR/Cas12a method shows satisfactory practicability in the analysis of the spiked human blood and stool and fish samples. These results demonstrate that our developed pathogenic A. hydrophila detection method, dRAA-CRISPR/Cas12a, is a promising potential method for the early diagnosis of human A. hydrophila infection and on-site detection of A. hydrophila in food and aquaculture.

19.
J Agric Food Chem ; 70(30): 9463-9476, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35858119

ABSTRACT

Fucoidan has many biological activities, including the inhibitory effect on the development of various cancer types. This study showed that lipopolysaccharide-induced inflammation in FHC cells (normal human colonic epithelial cells) could be reversed using fucoidan at different concentrations. The fucoidan-induced anti-inflammatory effect was also confirmed through in vivo experiments in mice. Compared to the mice of the model group, the ratio of Firmicutes/Bacteroidetes in feces increased and the diversity of gut microbial composition was restored in mice after fucoidan intervention. In colorectal cancer (CRC) cells DLD-1 and SW480, fucoidan inhibited cell proliferation and promoted cell apoptosis. It also blocked the cell cycle of DLD-1 and SW480 at the G0/G1 phase. The animal model of inflammation-related CRC showed that the incidence of tumors in mice was significantly reduced by fucoidan intervention. Furthermore, the administration of fucoidan decreased the expression levels of inflammatory factors such as TNF-α IL-6 and IL-1ß in the colonic tissues. Therefore, fucoidan can effectively prevent the development of colitis-associated CRC.


Subject(s)
Colorectal Neoplasms , Sargassum , Animals , Colorectal Neoplasms/genetics , Humans , Inflammation/drug therapy , Mice , Polysaccharides/pharmacology
20.
Front Cell Infect Microbiol ; 12: 829380, 2022.
Article in English | MEDLINE | ID: mdl-35663472

ABSTRACT

In 2019, a dengue outbreak occurred with 290 confirmed cases in Wenzhou, a coastal city in southeast China. To identify the origin of the dengue virus (DENV) from this outbreak, viral RNA was extracted from four serum samples and sequenced for whole genome analysis. Then, phylogenetic analysis, gene mutation, secondary structure prediction, selection pressure analysis, and recombination analysis were performed. DENV strains Cam-03 and Cam-11 were isolated from patients traveling from Cambodia, while ZJWZ-18 and ZJWZ-62 strains were isolated from local patients without a record of traveling abroad. The whole genome sequence of all four strains was 10,735 nucleotides long. Phylogenetic tree analysis showed that the four strains belonged to genotype 1 of DENV-1, but the local Wenzhou strains and imported strains clustered in different branches. ZJWZ-18 and ZJWZ-62 were closely related to strain MF033254-Singapore-2016, and Cam-03 and Cam-11 were closely related to strain AB608788-China : Taiwan-1994. A comparison of the coding regions between the local strains and the DENV-1 standard strain (EU848545-Hawaii-1944) showed 82 amino acid mutations between the two strains. A total of 55 amino acid mutations were found between the coding regions of the local and imported strains. The overall secondary structure of the 3' UTR of the local strains had changed: apparent changes in the head and tail position were observed when compared to DENV-1 standard strain. Furthermore, selection pressure analysis and recombination detection using the 4 isolates and 41 reference strains showed two credible positive selection sites and eight credible recombination events, which warrant further studies. This study may enhance the understanding of viral replication, infection, evolution, virulence, and pathogenicity of DENV.


Subject(s)
Dengue Virus , Dengue , Amino Acids , China/epidemiology , Dengue/epidemiology , Disease Outbreaks , Genome, Viral , Genotype , Humans , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...